Synergistic exacerbation of diastolic stiffness from short-term tachycardia-induced cardiodepression and angiotensin II.
نویسندگان
چکیده
Synergistic interaction between angiotensin II (Ang II) and evolving cardiodepression may play an important role in worsening chamber function, particularly in diastole. To test this hypothesis, Ang II was infused at 10 or 17 ng.kg(-1).min(-1) in 18 conscious dogs 4 days before and during induction of subacute cardiodepression by 48-hour tachypacing. The lower dose yielded negligible systemic pressure changes. Twelve additional animals served as paced-only controls. Pressure-dimension relations were recorded, and serial endocardial biopsies were obtained to assess histological and metalloproteinase (MMP) changes. Forty-eight-hour pacing alone depressed systolic function but had little effect on diastolic stiffness. Ang II alone only modestly raised diastolic stiffness at both doses and enhanced contractility at the higher dose. These changes recovered toward baseline after a 7-day infusion. However, Ang II (at either dose) combined with 48-hour pacing markedly increased ventricular stiffness (110+/-26% over baseline) and end-diastolic pressure (22+/-1.7 mm Hg). In contrast, pacing-induced inotropic and relaxation abnormalities were not exacerbated by Ang II. Zymography revealed MMP activation (72- and 92-kD gelatinases and 52-kDa caseinase) after a 4-day Ang II infusion (at both doses), which persisted during pacing. Tachypacing initiated 24 hours after cessation of a 7-day Ang II infusion also resulted in diastolic stiffening and corresponded with MMP reactivation. Ang II also induced myocyte necrosis, inflammation, and subsequent interstitial fibrosis, but these changes correlated less with chamber mechanics. Thus, Ang II amplifies and accelerates diastolic dysfunction when combined with evolving cardiodepression. This phenomenon may also underlie Ang II influences in late-stage cardiomyopathy, when chamber distensibility declines.
منابع مشابه
b-Blockade Prevents Sustained Metalloproteinase Activation and Diastolic Stiffening Induced by Angiotensin II Combined With Evolving Cardiac Dysfunction
Angiotensin II (Ang II)–mediated sympathostimulation may worsen the progression of cardiac failure, although the nature and mechanisms of such interactions are largely unknown. We previously demonstrated that Ang II combined with evolving cardiodepression (48-hour tachycardia pacing, 48hP) induces marked chamber stiffening and increases metalloproteinases (MMPs). Here, we test the hypothesis th...
متن کاملbeta-blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction.
Angiotensin II (Ang II)-mediated sympathostimulation may worsen the progression of cardiac failure, although the nature and mechanisms of such interactions are largely unknown. We previously demonstrated that Ang II combined with evolving cardiodepression (48-hour tachycardia pacing, 48hP) induces marked chamber stiffening and increases metalloproteinases (MMPs). Here, we test the hypothesis th...
متن کاملArterial-cardiac destiffening following long-term antihypertensive treatment.
BACKGROUND We examined whether in addition to producing a greater degree of improvement of the arterial stiffness, long-term angiotensin II receptor blocker (ARB) treatment might also have a more beneficial effect on the cardiac diastolic dysfunction than long-term calcium-channel blocker (CCB) treatment; we also evaluated the association between the improvements of the two variables brought ab...
متن کاملChanges in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness.
BACKGROUND Titin contains a molecular spring segment that underlies passive myocardial stiffness. Myocardium coexpresses titin isoforms with molecular spring length variants and, consequently, distinct stiffness characteristics: the stiff N2B isoform (short spring) and more compliant N2BA isoform (long spring). We tested whether changes in titin isoform expression occur in the diastolic dysfunc...
متن کاملEffect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide
Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 82 4 شماره
صفحات -
تاریخ انتشار 1998